
ENGINEERING JOURNAL / FIRST QUARTER / 2017 / 21

INTRODUCTION

C astellated beams have been used since the 1940s (Zaar-
our and Redwood, 1996) because of their ability to 

offer wide and open spaces, reduce floor-to-floor heights, 
increase illumination, and improve aesthetic appeal. Engi-
neering advantages of castellated beams include superior 
load deflection characteristics, higher strength and stiffness, 
lower weight, and the ability to span up to 90 ft without field 
splicing. Also, the automation process has reduced the cost 
of their fabrication to the level where, for certain applica-
tions, they may be competitive with open-web steel joists 
(Zaarour and Redwood, 1996). Castellated beams have con-
sisted typically of hexagonal or octagonal openings, with the 
octagonal openings made possible by the addition of incre-
mental plates between the cut webs. Figure 1 illustrates an 

application of castellated beams with hexagonal openings. 
Another similar form is the cellular beam, which consists of 
circular web openings. Cellular beams have gained popular-
ity because of the aesthetic appeal they offer in architectur-
ally exposed surfaces. Some manufacturers have recently 
developed new opening shapes for castellated beams. For 
example, ArcelorMittal presented castellated beams with 
sinusoidal web openings, called the Angelina Beam (Wang 
et al., 2014). Durif and Bouchair (2013) performed an exper-
imental study on beams with such openings. Tsavdaridis and 
D’Mello (2011, 2012) investigated the behavior of castellated 
beams with novel, elliptically based web openings.

Castellated beams are subject to a variety of failure 
modes. Some of the typically investigated failure modes 
are flexural failure, shear failure, lateral-torsional buck-
ling, Vierendeel mechanism (Figure 2), web post buckling 
or yielding (Figure  3), local buckling, and welded joint 
rupture (Figure 4). Pure bending, shear and overall lateral-
torsional buckling are similar to the corresponding modes 
for solid-web beams and can be treated in an almost iden-
tical manner if the relevant geometric properties used are 
based on the reduced cross-section (Soltani et al., 2012). The 
failure modes that are specific to castellated beams are the  
Vierendeel mechanism, yielding or buckling of the web 
post, and fracture of the welded joint. The Vierendeel mech-
anism is likely to occur in castellated beams with large web-
opening lengths under high shear-to-moment ratio. Buckling 
of the web post can occur due to shear or compression. The 
buckling or yielding of the web post in shear occurs due 
to the combination of the shear force acting at mid-depth 
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of the web post with a double curvature bending moment 
over the height of the web post. The buckling of the web 
post in compression can occur when the web post is sub-
ject to concentrated forces. The horizontal shear force can 
also cause the fracture of the welded joint in the web post, 
especially in cases when the length of the welded joint is 
small. Local buckling may occur in three ways in castellated 
beams: (1) buckling of the compression flange, (2) buckling 
of the T-section in compression and (3) vertical instability of 
the sides of the web openings in high shear zones. Ellobody 
(2011, 2012) reports that additional failure modes may occur 
independently or interact with each other.

In many cases, castellated beams are subject to concen-
trated loads, such as a reaction from a column or a reaction 
from a supporting girder. The solution in situations like this 
is typically to provide a stiffener or filler plate (Figure 5) 
at such concentrated load locations to prevent the buck-
ling of the web post due to compression. However, both of 
these solutions require additional labor and, in the case of 
the filler plate, may defeat the aesthetic appeal offered by 
castellated beams. Additionally, if the advantages of auto-
mation are to be fully exploited, such strengthening details 
must be minimized. The purpose of this paper is twofold: 
(1) to investigate the limit state of web post buckling due to 

compression loads and (2) to quantify the enhanced capacity 
of the web post against concentrated loads when stiffeners 
are provided. This is accomplished by performing 30 non-
linear finite element analyses, which feature various loca-
tions of the concentrated force, castellated beams with and 
without stiffeners, and various web post height to thickness 
ratios. In this study, only castellated beams with hexagonal 
openings are investigated. Additionally, the hexagonal open-
ings feature a specific size relative to the total beam depth. 
A simplified approach, utilizing an effective web width, is 
proposed to aid engineers during the design process.

DESIGN METHODS

At present, there is not a generally accepted design method 
published in the form of a design guide for castellated 
beams—primarily because of the complexity of their behav-
ior and the associated modes of failure. Soltani et al. (2012) 
report that at the European level, design guidance given in 
Amendment A2 of Eurocode 3 (ENV, 1993): Annex N Open-
ings in Webs was prepared in draft format but was never 
completed (SCI, 2006). In the United States, while Design 
Guide 2 (Darwin, 2003) covers steel and composite beams 
with web openings, it is explicitly stated that castellated 
beams are excluded. Various design approaches exist for 
how to treat failure modes such as Vierendeel mechanism, 

Fig. 1. Application of castellated beams  
(Scherer Steel Structures, Inc.).

 (a) (b)

Fig. 2. Vierendeel mechanism caused by shear  
transfer through perforated web zone (Halleux, 1967):  

(a) overall view, (b) close-up view of castellation.

Fig. 4. Rupture of a welded joint (Halleux, 1967).

 (a) (b)

Fig 3. Web buckling: (a) shear compressive  
half-wave near a support; (b) flexural buckling below  

a concentrated load (Hosain and Spiers, 1973).
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fracture of a welded joint, and web-post buckling due to the 
horizontal shear and bending moments. Soltani et al. (2012) 
provide a summary of these design methods and propose 
a numerical model to predict the behavior of castellated 
beams with hexagonal and octagonal openings up to failure. 
Tsavdaridis and D’Mello (2011, 2012) performed an optimi-
zation study on perforated steel beams with various novel 
web-opening shapes through nonlinear finite element analy-
ses and an investigation on the behavior of perforated steel 
beams with closely spaced web openings. Zaarour and Red-
wood (1996) investigated the strength of castellated beams 
susceptible to web-post buckling due to horizontal shear and 
bending moments. Wang et al. (2014) examined the Vierend-
eel mechanism failure of castellated beams with fillet corner 
web openings.

One of the studies that addresses the resistance of castel-
lated beams against concentrated loads, in addition to the 
other modes of failure, is the one performed by Hosain and 
Spiers (1973), in which they tested 12  castellated beams 
with the objective of investigating the effect of hole geom-
etry on the mode of failure and ultimate strength of such 

beams. An attempt was made to study the phenomenon of 
web buckling due to compression and due to shear in the 
framework of existing approximate design methods of that 
time. Three beams failed prematurely due to web buckling, 
and they either had no stiffeners or partial-depth stiffeners 
below the concentrated loads. Buckling of the web posts pre-
vented these beams from reaching their maximum capacity. 
The method proposed by Blodgett (1966) was used to com-
pare the predicted capacity of the web post in compression 
with the experimentally obtained failure loads. Blodgett’s 
method treats the nonprismatic solid web as a column hav-
ing a length equal to the clear height of the hole, a width 
equal to the web weld length and a thickness equal to the 
web thickness (Figure 6). To calculate the effective column 
length (kl), k was assumed to be 1.0.

Kerdal and Nethercot (1984) reviewed previous studies on 
the structural behavior of castellated beams and identified 
a number of different possible failure modes. It was con-
cluded that both lateral-torsional instability and the forma-
tion of a flexural mechanism may be handled by an adaption 
of established methods for plain webbed beams, provided 

Fig. 5. Reinforcing techniques for castellated beams subject to concentrated loads.

Fig. 6. Simplified equivalent column approach for the investigation of the limit state of web post buckling in compression.
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that the cross-sectional properties are those corresponding 
to the centerline of castellation. It was also concluded that 
the methods available at that time for the determination of 
collapse in the other modes, while rather less accurate, were 
adequate for design except in the case of web post buck-
ling in compression. Kerdal and Nethercot state that while 
the web post could be considered to be a column having the 
depth of the hole and the area of the welded joint, there does 
not seem to be an agreement as to which effective length of 
the column to use. For example, an effective length factor 
of 0.75 was used in the study by the United Steel Co. Ltd. 
(1957). This was later (1962) reduced to 0.5 in a report by 
the same agency. Finally, Hosain and Spiers (1973) assumed 
the web posts to be pinned at both ends. Accordingly, one of 
the conclusions in the report by Kerdal and Nethercot is that 
no satisfactory method has been identified for the prediction 
of the load causing vertical buckling of the web post under 
a concentrated load or at a reaction point. As a result, this 
failure mode was reported as an area of uncertainty in the 
design of castellated beams, and there is a need to obtain a 
better idea as to what is the effective area of the column and 
its effective length.

In the light of this discussion, the investigation described 
in this paper was undertaken with the goal of investigating 
the capacity of castellated beams under concentrated loads 
using nonlinear finite element analysis and models that spe-
cifically address this condition by isolating the beam sec-
tions from the other modes of failure.

RESEARCH APPROACH

To investigate the capacity of castellated beams when they 
are subject to concentrated loads, five beam depths were 
selected (Table 1). Next to each castellated beam section is 
provided the original wide flange beam used to fabricate the 
castellated beams. These beams were selected such that they 
covered a wide range of depths so that the capacity of each 
section against concentrated loads, with and without stiffen-
ers, could be investigated. In cases when castellated beam 
sections feature stiffeners, the thickness of the stiffener was 

always 0.5  in. The web clear height to thickness ratios for 
these five beams range from 27.7 to 89.6. Table 2 provides 
a summary of the information used to define the geometry 
of the castellated beams. Each beam depth was subject to 
compressive loads at the top flange (Figure  7). The com-
pression load was applied in the form of a uniformly dis-
tributed load over the length of the castellated beam section 
under consideration. Three load locations were investigated: 
(A) centered over the web post, (B) centered over the hole, 
and (C) centered midway between the center of the hole and 
the center of the web post. These load positions are iden-
tified as A, B and C, respectively, and cover the potential 
concentrated load positions that castellated beams will be 
subject to. The castellated beam section lengths for each of 
these three load cases are provided in Table 1 together with 
the aspect ratio between the section length, S, and the overall 
depth of the beam, dg. The top flange of the castellated beam 
specimens was restrained against translations in directions 
1 and 3 and against rotations about all three axes to simu-
late out-of-plane lateral bracing, the restraint provided by 
the rest of the beam, and the restraint provided by the slab 
or any other supported member. The top flange was free to 
translate in the vertical direction to accommodate the appli-
cation of the load. The bottom flange was restrained against 
all translations and rotations. The restraint provided by the 
continuation of the beam to the vertical edges of the webs 
was conservatively ignored, and these edges were modeled 
as free. As stated earlier, the five selected beams were inves-
tigated for the case when their webs are unreinforced and 
reinforced with full-height bearing stiffeners.

The concentrated loads were assumed to apply over the 
supports. This loading arrangement is believed to be the 
most critical for the limit state of web post buckling in com-
pression, compared to other cases when the concentrated 
loads are applied away from the supports. To demonstrate 
this, a simply supported castellated beam was analyzed once 
with a concentrated load applied at mid-span and another 
time with a concentrated load applied over the left support. 
Figure 8 illustrates the orientation and magnitude of prin-
cipal compressive stresses for both cases. When the load is 

Table 1. Investigated Castellated Beams (CB)

W Section CB Section hwcb/tw

Section Length (S**) (in.) Aspect Ratio (S/dg**)

A,* B* C* A,* B* C*

W8×40 CB12×40 27.7 11.5 5.75 1 0.50

W12×50 CB18×50 44.7 15.0 7.50 0.83 0.42

W16×50 CB24×50 62.0 19.0 9.50 0.77 0.39

W21×62 CB30×62 76.7 23.0 11.5 0.76 0.38

W27×84 CB40×84 89.6 30.0 15.0 0.74 0.37

*Load position (Figure 7). **See Table 2.
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applied at mid-span, the magnitude of the principal com-
pressive stresses in the region underneath the load is 10.6 
ksi at most. The orientation of the principal compressive 
stresses is vertical in the region immediately underneath the 
load and becomes more inclined and horizontal toward the 
bottom section of the beam. This is expected because the 
load is finding its way toward the supports. The maximum 
principal compressive stress occurs at the right support and 
is 14.4 ksi. When the load is applied over the left support, the 

magnitude of the maximum compressive stress is 14.1 ksi, 
which is higher than the magnitude of principal compressive 
stresses underneath the load when the load was applied at 
mid-span, even though the width of web post at mid-height 
of the beam section is higher than the width at mid-span. 
This demonstrates that the most critical loading condition as 
it pertains to the limit state of web post buckling in compres-
sion is when the load is applied directly over the support.

Table 2. Geometry of Investigated CBs

CB 
Section

e  
(in.)

b  
(in.)

dt  
(in.)

dg  
(in.)

tw 
(in.)

bf  
(in.)

tf 
(in.)

S  
(in.)

ho  
(in.)

h  
(in.)

Wo  
(in.)

Phi 
(deg)

CB12×40 4.0 1.75 2.50 11.5 0.375 8.125 0.563 11.5 6.50 3.25 7.50 61.70

CB18×50 4.5 3.25 3.25 18.0 0.375 8.125 0.625 15.0 11.375 5.75 10.75 60.27

CB24×50 4.5 5.00 4.00 24.5 0.375 7.125 0.625 19.0 16.50 8.25 14.50 58.81

CB30×62 6.0 5.50 6.00 30.0 0.375 8.250 0.625 23.0 18.00 9.00 17.00 58.54

CB40×84 7.0 8.00 6.50 40.5 0.438 10.00 0.625 30.0 27.375 13.75 23.00 59.74

Fig. 7. Investigated cases.
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Thirty nonlinear finite element analyses were performed 
to obtain failure loads for the investigated specimens and to 
propose a simple design methodology that is based on the 
concept of an effective web width.

FINITE ELEMENT ANALYSIS

The numerical simulations described in this paper were 
performed by using the commercially available finite ele-
ment analysis software Abaqus (Dassault Systemes, 2014). 
Because the primary goal of this investigation is the buck-
ling of the web under concentrated loads, flanges were mod-
eled as rigid bodies. The webs and stiffeners were modeled 
using S8R5 shell elements. The S8R5 element is a doubly 
curved thin-shell element with eight nodes, and it employs 
quadratic shape functions. The “5” in S8R5 denotes that each 
element has five degrees of freedom (three translational, 
two rotational) instead of six (three translational, three rota-
tional). The rotation of a node about the axis normal to the 
element mid-surface is removed from the element formula-
tion to improve computational efficiency (Moen, 2008). The 

“R” in the S8R5 designation denotes that the calculation of 
the element stiffness is not exact; the number of Gaussian 
integration points is reduced to improve computational effi-
ciency and avoid shear locking (Moen, 2008). This element 
is designed to capture the large deformations and through-
thickness yielding expected to occur during the out-plane 
buckling of the web post to failure. The size of the mesh was 
selected such that each element side did not exceed 0.5 in. 
in length and was determined based on results from con-
vergence studies to provide a reasonable balance between 
accuracy and computational expense. It was assumed that 
the self-weight of the specimens was negligible compared 
to the applied loads. Although the cross-sections were sym-
metrical about the major axis, it was necessary to model 
the full cross-section because the buckled shape could be 
nonsymmetrical.

The finite element model takes into account both mate-
rial and geometric nonlinearities. The structural steel was 
modeled using a bilinear stress-strain relationship based 
on coupon test data provided by Arasaratnam et. al (2011). 
The true stress versus true strain relationship is shown in 

(a)

(b)

Fig. 8. Orientation and magnitude of principle compressive stresses: (a) load near mid-span; (b) load over left support.
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Figure 9 and was input into Abaqus to define the limits of 
the Von Mises yield surface. Young’s modulus, E, was set at 
29,000 ksi, and Poisson’s ratio, ν, was set to 0.3. To initiate 
buckling, an initial, small, out-of-plane geometric imperfec-
tion—in the form of the first mode shape obtained from an 
eigenvalue buckling analysis—was imposed to the model. 
An Abaqus.fil file is created for each eigenbuckling analy-
sis, which is then called from the nonlinear.inp file with the 
*IMPERFECTION command. During the design phase, the 
imperfections are typically unknown and are accounted for 
in the design equations used to estimate the capacity of the 
members. They are usually used as general random quanti-
ties that can be rigorously treated by stochastic techniques 
(Soltani et al., 2012). In their investigation, Soltani and col-
leagues state that according to their knowledge, no consensus 
exists on maximum imperfection magnitudes for castellated 
beams even when the imperfection is in the shape of the low-
est eigenmodes. Two imperfection magnitudes were used in 
the study performed by Soltani et al.—dw/100 and dw/200, 
where dw is the clear web depth between the flanges—and 
it was shown that the model was not significantly affected 
by a change in the magnitude of the initial lateral deflection 
taken in the shape of the lowest buckling mode. Accord-
ingly, the magnitude of the initial imperfection employed in 
this study is hcbw/100 [where hcbw is the clear height of the 
web (see Table 2) and is the same as dw used by Soltani et 
al.]. Material nonlinearity is simulated in Abaqus with clas-
sical metal plasticity theory, including the assumption of a 
Von Mises yield surface. In this study, residual stresses are 
not considered.

The modified Riks method was used to determine the 
nonlinear response of the castellated beam section. The 
modified Riks method (i.e., *STATIC,RIKS in Abaqus), 

was developed in the early 1980s and enforces an arc length 
constraint on the Newton-Raphson incremental solution to 
assist in the identification of the equilibrium path at highly 
nonlinear points along the load-deflection curve (Crisfield, 
1981). The loads are applied uniformly along the length of 
the web and stiffeners when applicable. As stated earlier, top 
and bottom flanges were modeled as rigid bodies with refer-
ence nodes at the centroid of each flange (Figure 10). For 
each case, the vertical displacement at the reference node of 
the top flange and the reaction at the reference node of the 
bottom flange were recorded. The maximum vertical dis-
placement at the reference node of the top flange was typi-
cally limited to 2  in. because such a vertical displacement 
corresponded with loads that were much lower than the peak 
load and were well into the descending branch of the load 
displacement curve. A 2-in. vertical displacement provides 
the opportunity to investigate the full behavior to failure and 
determine the reserve capacity of the section once the peak 
load is achieved and the beam continues to deform. Also, 
when the vertical displacement is 2 in., the deformed config-
uration of the beam web can be clearly seen. Additionally, a 
2-in. vertical displacement helps examine the efficiency of 
various stiffener arrangements in terms of post–peak-load-
carrying capabilities.

To validate the modeling approach, the failure loads for 
seven beam tests performed by Chen and Oppenheim (1974) 
and Chen and Newlin (1973) were compared to the failure 
loads obtained from finite element analyses. The tests were 
performed on solid web beam sections, which were com-
pressed on both flanges until the web buckled. This load-
ing setup is similar to the loading condition described in 
this study for castellated beams. The results for these beam 
tests were used to develop the current AISC Specification 

Fig. 9. True stress-strain curve based on data from Arasaratnam et al. (2011).
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equation for the web compression buckling limit state in 
Section J10.5 (AISC, 2010). Additional information on the 
applicability of the AISC web-buckling provisions to the 
castellated beams is provided later in this paper. A sum-
mary of the experimentally obtained failure loads and 
those computed using finite element analysis is provided in 
Table 3. The average ratio between the peak load obtained 
from the tests and that obtained from finite element analyses 
is 1.06. This suggests that the modeling approach used in 
this study provides reliable results with respect to being able 
to predict the buckling capacity of the web.

RESULTS

Figure 10 shows the first buckled mode shapes for CB12×40 
when it is unreinforced and reinforced with stiffeners. As 
expected, the first buckled mode shape for the unreinforced 
cases is a typical out-of-plane buckling of the castellated 
beam web. For the reinforced cases, the first buckled mode 
shape featured a combination of web and stiffener buckling 
for load cases A and C and only web buckling for load case 
B. This was due to the fact that although the stiffener in load 
case B was located such that it aligned with the center of 
the load, the web post was the weakest element, and it buck-
led first. This behavior is similar to local buckling when, 
in a given cross-section, one element is more susceptible to 
buckling than the rest of the elements.

Figure 11 shows the deformed shape at simulated failure 
for all five cases investigated using CB12×40. As stated ear-
lier, simulated failure corresponds to a vertical displacement 
of 2 in. in the reference node of the top flange. As expected, 
in all cases, the deformed shape at failure is an exaggeration 
of the first buckled mode shape. Even for load case B when 
the section is reinforced with a stiffener, due to deforma-
tion compatibility, the stiffener is eventually engaged in the 
resistance against the applied load. It should be noted that 
because the stiffeners could only be minimally attached to 

the web for load position B, the stiffener buckled in a flex-
ural mode. For load position A, the stiffeners were fully 
attached to the web, which resulted in a buckling mode that 
featured translation and rotation.

Figure 12 illustrates the uniform load versus vertical dis-
placement relationship for all investigated cases. Five graphs 
are presented, with each graph illustrating the results per-
taining to each castellated beam section. The uniform load 
is obtained by dividing the reaction obtained at the reference 
node of the bottom flange with the section length provided 
in Table 1. This was done to make a consistent comparison 
among all three load cases considered, given that the cas-
tellated beam section length for load case C is half of that 
considered in load cases A and B. The vertical displacement 
is obtained at the reference node of the top flange, and the 
analysis was typically stopped when this value reached 2 in. 
As can be seen, all three unreinforced cases behaved simi-
larly, and the load displacement curves are almost identical. 
This is expected and intuitive because the effective section 
resisting the applied load per unit length is the same. The 
peak uniformly distributed loads for each case are summa-
rized in Table 4. It can be observed that for all cases, the 
peak load decreases as the section depth increases. This is 
also expected and intuitive because the higher the unbraced 
length against buckling the lower the peak load.

The presence of stiffeners increases significantly the 
capacity of the castellated beam sections against concen-
trated loads. In almost all cases, the highest resistance is pro-
vided by load case C when it is reinforced with a stiffener. 
This is due to the fact that even though the section length 
and the applied load were both half of those considered in 
cases A and B, the stiffener size was kept constant. Accord-
ingly, reinforced load case C benefited relatively more from 
the presence of the stiffener. It can also be observed that 
the slope of the descending branch of the load displacement 
curve is smaller in reinforced load case A compared to rein-
forced load cases B and C. This occurs because, for load 

Table 3. Comparison of Web Compression Buckling Capacities

Case  
No. Reference Section

Ptest 
(kips)

PFEA  
(kips)

(Test)P
Ratio =

P (FEA fixed)
ult

ult

1 Chen & Oppenheim (1974) W10×30 90 81 1.11

2 Chen & Oppenheim (1974) W10×39 253 232 1.09

3 Chen & Newlin (1973) W12×27 64 59 1.09

4 Chen & Oppenheim (1974) W12×30 61 64 0.95

5 Chen & Newlin (1973) W12×45 166 146 1.14

6 Chen & Newlin (1973) W12×45 260 274 0.95

7 Chen & Oppenheim (1974) W12×45 168 153 1.10

Average 1.06
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case A, the stiffener was placed where it was needed the 
most, which is at the center of the web post. The center of 
the web post in all three cases is the section that is most 
susceptible to web buckling.

The uniformly distributed load applied to the castellated 
beam sections was also normalized with respect to the uni-
formly distributed load that causes yielding at the smallest 
cross-section along the height of the web (mid-height of 
web) to investigate the efficiency of the sections in resisting 
the applied load (Figure 13). Figure 13 suggests that as the 
sections get deeper, the effect of web slenderness becomes 
more pronounced in the unstiffened castellated beams. Also, 
in all stiffened cases and load position A, the failure load is 
equal to or slightly higher that the yield load, which once 
again highlights the efficiency of the stiffener for this load 

position. The reason the failure load is slightly higher than 
the yield load in some cases is attributed to strain hardening.

In all cases, the presence of the stiffeners enhances the 
capacity of the section significantly. Stiffened cases with 
load position C yielded lower ratios than those with load 
position A but higher ratios than those with load position B. 
This again suggests the relative inefficiency of the stiffener 
location for load position B. The lower normalized values 
for the peak load obtained for load position B are partially 
attributed to the fact that the stiffener was only minimally 
attached to the web at the top and bottom portions of the 
beam. As mentioned earlier, this led to a flexural buckling 
mode for the stiffener about its minor axis. In contrast, for 
load position A, the stiffener was fully attached to the web, 
which positively influenced its efficiency in resisting the 
applied load.

Fig. 10. First buckled mode shape for CB12×40.

Fig. 11. Deformed shape at failure for CB12×40.

Table 4. Uniformly Distributed Failure Load, wn (kip/in.)

Load 
Position

CB12×40 CB18×50 CB24×50 CB30×62 CB40×84

No 
Stiffener Stiffener

No 
Stiffener Stiffener

No 
Stiffener Stiffener

No 
Stiffener Stiffener

No 
Stiffener Stiffener

A 6.8 28.5 3.7 23.3 2.3 17.4 1.8 16.9 1.6 16.0

B 6.5 23.0 3.6 17.7 2.2 12.9 1.8 9.4 1.5 5.0

C 6.5 46.7 3.6 35.9 2.2 24.0 1.8 22.0 1.5 15.9
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The total reaction that corresponded with the peak load 
obtained at the reference point of the bottom flange was com-
pared with the predicted nominal strength of an equivalent 
solid web beam section calculated based on AISC Specifi-
cation Section J10 (Table 5) (AISC, 2010). Only the unrein-
forced sections were included in this comparison, and only 
articles J10.2 (web local yielding), J10.3 (web crippling) and 
J10.5 (web compression buckling) were considered because 
the investigated sections were adequately braced against 
out-of-plane translations at the top and bottom flanges. The 
web local yielding provisions (Eqs. 1 and 2) apply to both 

compressive and tensile forces of bearing and moment con-
nections. These provisions are intended to limit the extent of 
yielding in the web of a member into which a force is being 
transmitted (AISC, 2010). The bearing length, lb, in all cases 
was taken equal to the section length (Table 1), and k was 
taken as zero because the fillet between the web and the 
flange was not included in the finite element model. The web 
crippling provisions (Eqs. 3, 4 and 5) apply only to compres-
sive forces, which is consistent with the cases investigated 
in this study. Web crippling is defined as crumpling of the 
web into buckled waves directly beneath the load, occurring 

Fig. 12. Uniform load versus vertical displacement at the top of the web post. 
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in more slender webs, whereas web local yielding is yield-
ing of that same area, occurring in stockier webs (AISC, 
2010). The web compression buckling provisions (Eqs.  6 
and 7) apply only when there are compressive forces on both 
flanges of a member at the same cross-section, which is also 
consistent with the cases investigated in this study. Equa-
tion 6 is predicated on an interior member loading condition, 
and in the absence of applicable research, a 50% reduction 
has been introduced for cases wherein the compressive 
forces are close to the member end (Eq. 7) (AISC, 2010). 

Equation 6 was developed by Chen and Newlin (1973) dur-
ing a study on the column web-buckling strength in beam-
to-column connections. Equation 6 was derived by using the 
critical buckling stress of a square plate simply supported 
on all sides and by adjusting it to fit the results from the 
most critical test. Figure 14 shows the test setup. Because 
the investigation was focused on beam-to-column connec-
tions, Chen and Newlin state that from observations of the 
test results in the present and previous tests, it appears justi-
fied to assume that the concentrated beam-flange load acts 

 Fig. 13. Normalized uniform load versus vertical displacement at the top of the web post.
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on a square panel whose dimensions are dc × dc, where dc is 
the column web depth.

In all cases in which the load was assumed to be away 
from member ends, the limit state of web compression buck-
ling controlled, with the exception of C12×40 load case C, 
in which web local yielding controlled over the other limit 
states. When the load was assumed to be at member ends, 
the limit state of web compression buckling controlled in 
all cases. Accordingly, this was primarily an evaluation of 
the applicability of Equations  6 and 7. Equations  6 and 7 
are used to predict web compression buckling in solid web 
beams as a function of web thickness, tw, modulus of elas-
ticity, E, web yield stress, Fyw, and clear distance between 
flanges less the fillet, h. Because these equations were 
derived assuming that the load is applied over a length equal 
to the depth of the web, they do not distinguish between 
various load bearing lengths.

Equation  6 grossly overestimated the nominal strength 
of the castellated beam sections against concentrated loads 
when the loads were assumed to be away from the mem-
ber ends. This was expected for several reasons. Equation 6 
was developed for solid web beams and does not take into 
consideration the presence of the holes. Additionally, in the 
cases investigated in this study, the restraint provided by the 
continuation of the castellated beam to the web on both sides 
(if applicable) was conservatively ignored, whereas in the 
derivation of Equation 6, the square web panel was assumed 
to be simply supported on all sides. Also, the aspect ratio 
between the loaded length and member depth was, at best, 
1.0 (Table  1). The combination of lower than 1.0 aspect 
ratios between the loaded length and the depth of the castel-
lated beam, especially for load position C, and the fact that 
no restraint was assumed on the sides of the beam, resulted 
in computed capacities lower than those predicted by AISC 
equations for web compression buckling.

When the load was assumed to be at member ends (Eq. 7), 
the prediction improved, especially for load cases A and B. 
This is also expected because when the load is applied at 
member ends, the restraint provided by the continuation of 
the castellated beam to the web applies only to one end, and 
it represents more closely the boundary conditions used in 
this study. For load case C, the equation still grossly overes-
timated the strength of the castellated beam sections because 
it does not take into account the shorter loaded length and 
the lower aspect ratios.

The average between the peak load obtained from nonlin-
ear finite element analysis and that obtained from the AISC 
web buckling provisions, assuming that the load is at mem-
ber ends, was 1.16 for load position A and B and 0.57 for 
load position C.

Web Local Yielding
 Away from member ends

 Rn = Fywtw(5K + lb) (1)

 At member ends

 Rn = Fywtw(2.5K + lb) (2)

where
 tw = web thickness, in.
 Fyw = web yield stress (59 ksi)
 k =  distance from outer face of the flange to the web 

toe of the fillet, in.
 lb = length of bearing, in.

Web Local Crippling
 Away from member ends
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where
 E = modulus of elasticity (29,000 ksi)
 d = full nominal depth of the section, in.
 tf = thickness of flange, in.

Fig. 14. Test setup used by Chen and Newlin  
to investigate web-buckling strength (1973).
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Web Compression Buckling

 Away from member ends
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 At member ends
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where
 h = clear distance between flanges less the fillet

PROPOSED SIMPLIFIED APPROACH

The results from nonlinear finite element analyses were 
used to calculate an effective web width for castellated 
beams with and without bearing stiffeners. For cases in 
which the castellated beams had no stiffeners, the web post 
was treated as a rectangular column with a height equal to 
the clear height of the web (hwcb) and an effective width (beff) 

Table 5. Comparison of Predicted Failure Loads

Load
Position

FEA* 
(kips)

AISC** (kips) Ratio = FEA/AISC

Away from 
Member Ends At Member Ends

Away from
Member Ends At Member Ends

CB12×40

A 77.8 172.6 86.3 0.45 0.90

B 74.6 172.6 86.3 0.43 0.86

C 37.2 127.2*** 86.3 0.29 0.43

CB18×50

A 56.0 105.3 52.7 0.53 1.06

B 54.6 105.3 52.7 0.52 1.04

C 27.2 105.3 52.7 0.26 0.52

CB24×50

A 43.1 73.8 36.9 0.58 1.17

B 41.7 73.8 36.9 0.57 1.13

C 20.8 73.8 36.9 0.28 0.56

CB30×62

A 42.3 59.6 29.8 0.71 1.42

B 41.0 59.6 29.8 0.69 1.38

C 20.4 59.6 29.8 0.34 0.68

CB40×84

A 47.1 69.2 34.6 0.68 1.36

B 45.1 69.2 34.6 0.65 1.30

C 22.5 69.2 34.6 0.33 0.65

Average of A and B 1.16

Average of C 0.57
* Nominal capacity computed from nonlinear finite element analysis.
** Nominal strength calculated based on AISC Specification Sections J10.2, J10.3 and J10.5. Typically governed by J10.5 (web compression buckling unless 

otherwise noted).
*** Governed by web local yielding.

(Figure 15) that was calculated using an iterative procedure 
such that the axial load capacity of the rectangular column 
matched that calculated from finite element analyses of the 
corresponding castellated beam section. The nominal axial 
strength of the rectangular column was calculated using 
AISC Specification Section E3 (2010) and was determined 
based on flexural buckling of the effective portion of the 
web. The rectangular column was assumed fixed at both 
ends and braced against out-of-plane translations at both top 
and bottom flanges.

For cases in which the castellated beams featured trans-
verse stiffeners, the web post was treated as a column with 
a cruciform cross-sectional shape consisting of the web and 
the stiffeners (Figure  15). The effective width of the web 
(beff) was again calculated iteratively such that the nomi-
nal axial strength of the column with the cruciform cross-
sectional shape calculated based on AISC Specification 
Sections E3 and E4 (2010) matched with the peak load cal-
culated from finite element analyses of the corresponding 
castellated beam section. In this case, the nominal strength 
of the equivalent column section was always controlled by 
the torsional buckling mode. The column with the cruciform 
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cross-sectional shape was assumed fixed at both ends and 
braced against out-of-plane translations at both top and bot-
tom flanges.

The calculated effective widths for unstiffened and stiff-
ened cases are provided in Table 6 for all CB sections con-
sidered. These effective web widths will allow the engineer 
to check the limit state of web post buckling due to compres-
sion by treating unstiffened webs as rectangular columns and 
stiffened webs as columns with a cruciform cross-sectional 
shape. The nominal strength of these equivalent columns 
can then be calculated based on the AISC Specification 
(2010). The equivalent rectangular column can be designed 
in accordance with AISC Specification Section E3, and the 
equivalent column with the cruciform cross-sectional shape 
can be designed in accordance with Sections E3 and E4. In 
this approach, the effects of local buckling for the cruci-
form cross-sectional shape need not be considered because 
the effective width was computed to match the results from 
nonlinear finite element analysis, which account for local 
buckling effects. The height of the equivalent columns is 
taken equal to clear height of the web (hwcb) of the castel-
lated beam. This height is different from that used in design 
approaches proposed by other investigators (Blodgett, 1966; 

United Steel Co. Ltd., 1957, 1962; Hosain and Spiers, 1973), 
in which the height of the column was taken equal to clear 
height of the hole. After examining the deformed shapes 
of the castellated beam sections at simulated failure, it was 
decided to take K equal to 0.5. Table 6 provides a summary 
of the effective web widths for all the investigated cases.

For the unstiffened cases, the effective width typically 
increases as the castellated beam depth increased. Also, for 
the stiffened cases and load position A, the effective width 
increased as the section depth increases; however, for load 
positions B and C, there was no direct relationship between 
the increase in depth and the magnitude of the effective web 
width.

In most unstiffened cases, the calculated effective width 
is greater than the minimum width of the castellated beam 
web post e (Table 7). For all stiffened cases and load position 
A the effective widths are always greater than e. For stiff-
ened cases in which load position B was investigated, the 
effective width was always smaller than e, and for stiffened 
cases and load position C, the effective width was greater 
than e for C12×40, C18×50 and C24×50 and smaller than 
e for C30×62 and C40×84. The reason the effective width 
was smaller than e in some of the stiffened cases is attrib-
uted to the fact that the loads obtained from nonlinear finite 
element analyses include the effects of local buckling, and 
the proposed approach was developed such that the engineer 
would only have to check the global buckling of the equiva-
lent column shapes. The results provided in Table 7 suggest 
once again that the stiffeners in load case B are not placed 
in the optimal position because the buckling of the web post 
occurs prior to the efficient engagement of the stiffeners.

To complement the proposed simplified approach, an 
additional investigation was carried out in which the effec-
tive width, beff, was taken equal to the minimum width of 
the web post, e (i.e., beff = 1.0e), and the nominal capaci-
ties calculated using the proposed simplified approach were 
compared with those obtained from finite element analyses 
(FEA). Table 8 provides a summary of the results. Assuming 
that beff = 1.0e generally resulted in conservative estimates of 
the nominal load capacity for web post compression buckling 
for the unstiffened cases. The average of the ratios between 
the predicted capacity using the simplified approach and 
the computed capacity using FEA was 0.87. For CB12×40 

Table 6. Effective Web Width beff (in.) (K = 0.5)

Load 
Position

CB12×40 CB18×50 CB24×50 CB30×62 CB40×84

No 
Stiffener Stiffener

No 
Stiffener Stiffener

No 
Stiffener Stiffener

No 
Stiffener Stiffener

No 
Stiffener Stiffener

A 4.29 5.63 4.24 7.48 5.28 7.74 7.93 12.17 10.36 13.28

B 4.11 2.37 4.14 2.63 5.11 2.70 7.68 2.11 9.91 1.86

C 2.05 2.58 2.06 2.84 2.55 2.30 3.82 2.58 4.94 2.38

Fig. 15. Equivalent rectangular and cruciform column sections.
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and CB18×50, this assumption led to rather accurate results 
for the unstiffened cases. However, as the castellated beam 
depth increased, this assumption led to more conservative 
results for castellated beams with no stiffeners.

For castellated beams with stiffeners and load position 
A, assuming that beff = 1.0e resulted in conservative esti-
mates. For stiffened cases and load position B, this assump-
tion always led to estimates that were higher than those 

Table 7. Comparison of Effective Web Width with Minimum Width of Web Post (K = 0.5)

Section Stiffener
Load 

Position beff* (in.) e** (in.)
Section Width 

(S**) (in.) Ratio = beff/e

CB12×40

No

A 4.29 4.00 11.5 1.07

B 4.11 4.00 11.5 1.03

C 2.05 2.00 5.75 1.03

Yes

A 5.63 4.00 11.5 1.41

B 2.37 4.00 11.5 0.59

C 2.58 2.00 5.75 1.29

CB18×50

No

A 4.24 4.25 15 1.00

B 4.14 4.25 15 0.97

C 2.06 2.125 7.5 0.97

Yes

A 7.48 4.25 15 1.76

B 2.63 4.25 15 0.62

C 2.84 2.125 7.5 1.34

CB24×50

No

A 5.28 4.50 19 1.17

B 5.11 4.50 19 1.14

C 2.55 2.25 9.5 1.13

Yes

A 7.74 4.50 19 1.72

B 2.70 4.50 19 0.60

C 2.30 2.25 9.5 1.02

CB30×62

No

A 7.93 6.00 23 1.32

B 7.68 6.00 23 1.28

C 3.82 3.00 11.5 1.27

Yes

A 12.17 6.00 23 2.03

B 2.11 6.00 23 0.35

C 2.58 3.00 11.5 0.86

CB40×84

No

A 10.36 7.00 30 1.48

B 9.91 7.00 30 1.42

C 4.94 3.50 15 1.41

Yes

A 13.28 7.00 30 1.90

B 1.86 7.00 30 0.27

C 2.38 3.50 15 0.68

* See Figure 7.
** See Table 2.

computed from FEA. For stiffened cases and load position 
C, the results varied. For the first three castellated beams, 
the assumption led to rather accurate estimates, and for the 
last two, it led to estimates that were higher than those com-
puted from FEA. In general, assuming that beff = 1.0e serves 
as a good starting point to create a general idea for the capac-
ity of the web post in compression, with the exception of the 
stiffened cases for load position B and the two deeper beam 
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Table 8. Comparison of Predicted and Computed Strengths for the Web Post Buckling Limit State

Section Stiffener
Load 

Position beff = 1.0e* (in.)
Pns

(kips)
PnFEA (FEA)

(kips)
Ratio =

Min (Pns/PnFEA)

CB12×40

No

A 4.00 72.5 77.8 0.93

B 4.00 72.5 74.6 0.97

C 2.00 36.3 37.2 0.98

Yes

A 4.00 289.5 327.3 0.89

B 4.00 289.5 264.2 1.10

C 2.00 248.9 268.6 0.93

CB18×50

No

A 4.25 56.1 56.0 1.00

B 4.25 56.1 54.6 1.03

C 2.125 28.1 27.2 1.03

Yes

A 4.25 289.7 349.4 0.83

B 4.25 289.7 264.9 1.09

C 2.125 247.6 269.2 0.92

CB24×50

No

A 4.50 36.7 43.1 0.85

B 4.50 36.7 41.7 0.88

C 2.25 18.4 20.8 0.88

Yes

A 4.50 272.9 331.4 0.82

B 4.50 272.9 245.5 1.11

C 2.25 216.8 228.0 0.95

CB30×62

No

A 6.00 32 42.3 0.76

B 6.00 32 41.0 0.78

C 3.00 16 20.4 0.79

Yes

A 6.00 319.8 388.8 0.82

B 6.00 319.8 215.3 1.49

C 3.00 265.5 253.4 1.23

CB40×84

No

A 7.00 32 47.1 0.68

B 7.00 32 45.1 0.71

C 3.50 16 22.5 0.71

Yes

A 7.00 387.6 481.1 0.81

B 7.00 387.6 151.1 2.57

C 3.50 315.8 237.7 1.33

Average unstiffened
Average stiffened

0.87

1.13
* See Table 2 (for load position C, e is half of the value in Table 2).

sections. More accurate estimates can be obtained by using 
the reported effective width values provided in Table 6. 

An example is provided to illustrate the application of 
the proposed simplified approach. The example features a 
CB30×62 that supports a composite roof slab and several 
stub columns. The CB cantilevers over two column supports. 

The location of the stub columns and support columns was 
intentionally chosen as a variable to illustrate the variety of 
loading conditions that a CB may be subject to. Addition-
ally, column sizes and the corresponding base plates and cap 
plates were chosen to cover the range of loading conditions 
that was investigated in this paper.
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DESIGN EXAMPLE

Given: 

The CB30×62 shown in Figure 16 is used to support a portion of the roof slab, two stub columns supporting a mechanical unit 
and two canopy columns providing shelter for the mechanical unit. The worst-case factored reactions and concentrated loads are 
provided in Figure 16. The top flange is braced by the roof slab, and discrete braces are provided at the bottom flange at concen-
trated loads and reaction points. Assume that the yield stress for the CB is Fy = 50 ksi and that the modulus of elasticity is E = 
29,000 ksi. Determine whether stiffeners should be provided in the castellated beam at concentrated loads and reaction points.

Solution:

Reaction 1 (R1 = 60 kips)

Using load position A without a stiffener, select the effective width from Table 6 (beff = 7.93 in.) Check the web of the castellated 
beam as a rectangular column fixed at both ends per AISC Specification Section E3 (2010).

Calculate section properties:

( )
( )

= −
= −

= =

L d t

L h

2

30 in. 2 0.625 in.

28.75 in. clear distance between �anges

g f

wcb

( )( )

=

=

=

I b t
1

12
1

12
7.93 in. 0.375 in.

0.035 in.

rec eff w
3

3

4

( )( )
=
=

=

A b t

7.93 in. 0.375 in.

2.97 in.

rec eff w

2

=

=

r
I

A

0.11 in.

rec

rec

Calculate elastic critical buckling stress and slenderness ratio:
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Calculate the flexural buckling stress, nominal and available compressive strength:
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u

Provide 2-in. transverse stiffeners, and check the enhanced capacity of the web. Using load position A with stiffeners, select the 
effective width from Table 6 (beff = 12.17 in.). Check the web of the castellated beam as a column with a cruciform cross-sectional 
shape fixed at both ends per AISC Specification Sections E3 and E4 (2010).

Calculate section properties:
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Fig. 16. Example of castellated beam subject to concentrated loads.
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Calculate buckling stress, nominal and available compressive strength:
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Again, 2-in. stiffeners on each side of the castellated beam web provide adequate strength to prevent the limit state of web post 
compression buckling.

Reaction 2 (R2 = 80 kips)

Using the same procedure, provide 2-in. stiffeners on each side of the castellated beam web.

Concentrated Load P1 = 35 kips, P2 = P3 = 15 kips

Using the same procedure, no stiffeners are required.

Concentrated Load P4 = 40 kips

In this case, the concentrated load aligns with the column reaction. Because the column reaction is higher, the necessity for 
stiffeners was determined based on the column reaction, and it was concluded that stiffeners were required.
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CONCLUSIONS

The research presented in this paper addressed the need for 
a design method to estimate the nominal capacity of cas-
tellated beams against concentrated loads as it pertains to 
the limit state of web post buckling in compression. The 
other limit states summarized in the Introduction—such 
as flexural failure, shear failure, lateral torsional buckling, 
Vierendeel mechanism, local buckling, buckling of the web 
post due to shear and fracture of a welded joint—should 
each be checked as described in the provided References so 
that the overall safety of the castellated beam in question is 
ensured. This investigation dealt with a loading condition 
in which the load is applied over a support. This was done 
to specifically study the limit state of web post buckling in 
compression. It was demonstrated that this loading condi-
tion represents the worst-case scenario with respect to the 
limit state of web post buckling in compression and that 
other conditions in which the load is away from the supports 
can be conservatively checked using the simplified approach 
presented herein.

Five castellated beam section depths were considered, 
which cover a wide range of the available depths. For each 
section three load cases were considered: (A) center of load 
aligns with the middle of web post, (B) center of load aligns 
with the center of the hole, and (C) center of load aligns with 
a point halfway between the center of web post and center 
of hole. For each load position, two cases were considered: 
one without a stiffener and one with a full-height stiffener. 
This resulted in a total of 30 cases, which were investigated 
using nonlinear finite element analyses that accounted for 
geometric and material nonlinearities, including the effect 
of initial imperfections.

The peak loads obtained from the analyses of unstiffened 
cases were compared with AISC Specification (2010) provi-
sions for flanges and solid webs with concentrated forces. 
Only Sections J10.2, J10.3 and J10.5 were considered for 
comparison because the castellated beam sections were 
assumed to be adequately braced for out-of-plane trans-
lations at the top and bottom flanges. When the load was 
considered to be away from member ends, AISC provisions 
for solid web beams grossly overestimated the capacity of 
the sections under consideration. This was expected for sev-
eral reasons. Equation 6 was developed for solid web beams 
and does not take into consideration the presence of the 
holes. Additionally, in the cases investigated in this study, 
the restraint provided by the continuation of the castellated 
beam to the web on both sides (if applicable) was conserva-
tively ignored, whereas in the derivation of Equation 6, the 
square web panel was assumed to be simply supported on 
all sides. Also, the aspect ratio between the loaded length 
and member depth was, at best, 1.0 (Table  1). When the 
load was assumed to be at member ends (Eq. 7), the predic-
tion improved, especially for load cases A and B. This is 

also expected because, when the load is applied at member 
ends, the restraint provided by the continuation of the beam 
to the web applies only to one end, and it represents more 
closely the boundary conditions used in this study. For load 
case C, the equation still grossly overestimated the capac-
ity of the castellated beam sections because it does not take 
into account the shorter loaded length and the lower aspect 
ratios. The average between the peak load obtained from 
nonlinear finite element analysis and that obtained from the 
AISC Specification web buckling provisions, assuming that 
the load is at member ends, was 1.16 for load position A and 
B and 0.57 for load position C. It was pointed out that the 
current equations in the AISC Specification in Section J10.5 
for checking the limit state of web compression buckling 
in wide flange beams do not distinguish between various 
load-bearing lengths. This shortcoming is currently being 
addressed as part of another study.

A simplified approach was presented for checking the 
limit state of web post buckling in compression, which con-
siders the web of a castellated beam as an equivalent col-
umn whose height is equal to the clear height of the web. 
This simplified approach assumes that the top and bottom 
flanges are adequately braced against out-of-plane transla-
tions. For the unstiffened cases, the equivalent column has 
a rectangular cross-section whose thickness is equal to the 
thickness of the web, and the width can be determined based 
on the effective width values presented in this paper. This 
equivalent rectangular column can be checked using AISC 
Specification provisions in Section E3 (AISC, 2010). For 
the stiffened case, the equivalent column has a cruciform 
cross-sectional shape that consists of the beam web and the 
stiffener. The width of the castellated beam web that can 
be used to determine the capacity of the column can be 
determined based on the effective width values presented in 
this paper. The equivalent column with a cruciform cross-
sectional shape need only be checked for global buckling 
using the provisions of AISC Specification in Sections E3 
and E4 because the effects of local buckling were included 
in the calculation of the effective web width. A K value 
equal to 0.5 is recommended based on an examination of the 
deformed shapes of castellated beam sections at simulated 
failure. It was demonstrated that taking beff = 1.0e provided a 
rather accurate estimate of the load capacities for CB12×40 
and CB18×50, and a conservative estimate for the rest of the 
castellated beams examined. It was also demonstrated that 
beff = 1.0e taking for all stiffened cases and load position A 
resulted in conservative estimates for the web post buckling 
capacity. The estimated capacity for stiffened cases and load 
position B based on this assumption was always higher than 
that computed from FEA. The results for stiffened cases and 
load position C varied.

The capacity of the unstiffened beams against concen-
trated loads, as it relates to the limit state of buckling of the 
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web post in compression, ranged from 1.5 kip/in. to 6.8 kip/
in., assuming that the load was applied over a distance equal 
to the spacing of the holes for load cases A and B and half 
the distance between the holes for load case C. These capac-
ities were significantly increased when the castellated beam 
sections were reinforced with stiffeners, and they ranged 
from 5 kip/in. to 47 kip/in.

The results presented in this paper can be used to deter-
mine the requirement for stiffeners in castellated beams to 
prevent the buckling of the web post due to compression. 
Physical testing of castellated beam sections subject to com-
pression loads similar to the tests performed by Chen and 
Oppenheim (1974) and Chen and Newlin (1973) should be 
conducted to complement the results obtained from the ana-
lytical work presented in this study.

Recommendations for Other Cases

The results presented in this paper can be directly applied 
in cases where the castellated beam sizes match those 
investigated herein. For other cases, the following practi-
cal approaches are recommended unless a finite element 
study is undertaken. For unstiffened castellated beams that 
are properly braced against out-of-plane translations at the 
top and bottom flanges, the effective web width, beff, for all 
loading cases considered can be taken equal to e (minimum 
width of the web post) because, in all investigated cases, the 
calculated effective width was typically larger than e. In the 
CB18×50 case, for load positions B and C, the ratio beff/e 
was slightly smaller than one (0.97); however, such a small 
difference is inconsequential given the level of accuracy 
considered in structural design. Additionally, it was demon-
strated that taking beff = 1.0e provided a rather accurate esti-
mate of the load capacities for the CB12×40 and CB18×50 
and a conservative estimate for the rest of the castellated 
beams examined. As discussed in the previous sections, the 
height of the equivalent rectangular column can be taken 
equal to hwcb, and K can be taken equal to 0.5. Additionally, 
if a more accurate estimate is desired, interpolation between 
the reported effective widths may be used for castellated 
beams that fall between CB24×50 and CB40×84 for the 
unstiffened cases.

For stiffened cases and load position A, Figure 13 sug-
gests that the capacity for the limit state of web compression 
buckling can be based on the yield strength of the section 
at mid-height of the web. Additionally, it was demonstrated 
that taking beff = 1.0e for all stiffened cases and load posi-
tion A resulted in conservative estimates for the web post 
buckling capacity.

For stiffened cases and load positions B and C, a ratio-
nal comparison between the case in question and the cases 
investigated in this paper can be used to arrive at a reason-
able conclusion.
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